This cross sectional, observational, case-control study was approved by the local institutional research ethics board prior to recruitment. Adult female participants were recruited from the local community. Based on medical history and gynecologic exam (Friedrich’s criteria), participants were allocated either to the PVD group or a control group (no symptoms). Exclusion criteria were pregnancy, menopause, other diagnosed gynecologic conditions (aside from PVD) and any contraindications to TMS. Prior to testing, participants were taught how to perform a gentle PFM contraction using visual and tactile feedback by an experienced pelvic health physiotherapist. Participants were then instrumented with surface electromyography (EMG) electrodes placed over the tibialis anterior (TA), the bulbocavenosus (BC), and the external anal sphincter (EAS) muscles on the right side. Custom monopolar suction electrodes were placed intravaginally, with the active pole over the right pubovisceral (PV) muscle bulk and the reference pole placed anteriorly over the pubis, just within the introitus to avoid crosstalk from the urethral sphincters. A common reference electrode was placed over the right anterior superior iliac spine. For TMS, participants were seated semi-reclined and single pulses were applied over the vertex using a Magstim 200 TMS system coupled with a double cone coil (96-mm loops). EMG signals were amplified (X1000) (bandpass 20-450Hz, Delsys Inc., Boston), digitized, and sampled at 1kHz using a Powerlab system and Labchart 8 Pro software (AD Instruments, Ltd., Colorado Springs, CO, USA). TMS testing proceeded by first determining the resting motor threshold (rMT) using the TA as the target muscle as described previously [1]. Twelve single TMS pulses (3-10s between pulses) were then delivered at an intensity of 1.3X rMT while participants reclined and remained relaxed, and the resulting MEPs were recorded from all instrumented muscles. Next, cSPs were elicited by asking participants to actively contract their PFMs while a TMS pulse was delivered at 1.3 rMT. Six cSP trials were performed. From the EMG recordings. MEP characteristics (amplitude and latency) and cSP duration (onset of MEP until the return of EMG activity) were measured for each trial and averaged for each PFM (i.e., PV, BC and EAS) (Figure 1).
Due to the novelty of the methods, pilot MEP data were first collected from the EAS while 5 participants with and 12 without PVD remained relaxed to test the feasibility of the protocol and to estimate the required sample size (Power = 80%, α=0.05). Group differences in MEP amplitude were observed (Cohen’s d=0.65), suggesting that a sample size of n=39 per group would be required to detect significant group differences in MEP amplitude at the EAS. Data were tested for normality (Shapiro-Wilks, inspection of histograms, Q-Q plots and residuals) and equal variance between groups. Analyses of variance (ANOVAs) were used to compare the groups, adjusting for unequal variances (Levene’s test) where relevant.