Phatak M¹, Kung R¹, Hair M², Abdel-Fattah M³, Agur W¹ **1.** Ayrshire Urogynaecology Unit, UK, **2.** University of West of Scotland, UK, **3.** University of Aberdeen, UK

VAGINALLY-ASSISTED LAPAROSCOPIC SACROPEXY (VALS) FOR WOMEN WITH UTERINE/VAULT PROLAPSE: 1-YEAR FOLLOW-UP OF A PILOT STUDY

Hypothesis / aims of study

Laparoscopic sacrocolpopexy combines the benefit of a gold standard in treatment of pelvic organ prolapse (POP) with those of a minimally-invasive technique (1). However, it is time-consuming and requires advanced laparoscopic skills (2). Vaginally-assisted laparoscopic sacro hystero/colpopexy (VALS) is a relatively-new technique aiming at reducing the requirement of extensive laparoscopic manoeuvring and suturing.

Study design, materials and methods

Data were analysed from the national BSUG online surgical database for the first 17 VALS procedures of the learning curve in our unit, from Jan-Sep 2012. All uteri were preserved. Pre- and 12-month postoperative patient-reported and objective outcomes were compared using the ICIQ-VS questionnaire and POP-Q scores. Assessment was independent of the operating surgeons.

Results

14 women underwent hysteropexy for stage II-III uterine and 3 underwent colpopexy for stage II-III vault prolapse. The average age was 55.0 years, BMI was 28.0 kg/m2 and average operating time was 112.5 min. There was a highly-significant improvement in ICIQ-VS (p<0.01) and POP-Q scores (p<0.01). There were no significant intra-operative complications. Asymptomatic 1cm prolene mesh erosion was noted in 1 (5.8%) patient at introitus (ICS Stage: 2AaT3S1) and required surgical excision.

Table 1: Patient demographics:

	Ν	Median	Minimum	Maximum
Age	17	55.0	39	73
Surgery time (mins)*	8	112.5	54	215
BMI	17	28.0	23	35

Table 2: ICIQ-UI and ICIQ-VS scores: pre and 1- year post operation:

	Ν	Median	Minimum	Maximum	р
Pre_ICIQ_UI	16	9.0	0	18	
Post_ICIQ_UI	17	7.0	0	16	
Change in UI	16	0.5	-10	18	0.22
Pre_ICIQ_VS	17	30.0	12	50	
Post_ICIQ_VS	17	4.0	0	24	
Change in VS	17	23.0	0	40	<0.01

Table 3: POP-Q scores: pre and 1- year post operation:

•	Ν	Median	Minimum	Maximum	р
Pre_POPQ_Aa	15	-1.0	-3	1	
Post_POPQ_Aa	17	-3.0	-3	0	
Change in Aa	15	1.0	0	3	< 0.01
Pre_POPQ_Ba	15	0	-3	2	
Post_POPQ_Ba	17	-3	-6	0	
Change in Ba	15	2.0	-1	5	< 0.01
Pre_POPQ_C	15	0	-9	2	
Post_POPQ_C	17	-8.0	-9	-6	
Change in C	15	7	-1	10	< 0.01
Pre_POPQ_Ap	15	0.0	-3	3	
Post_POPQ_Ap	17	-3	-6	0	
Change in Ap	15	3.0	-1	6	< 0.01
Pre_POPQ_Bp	14	0.0	-3	3	_
Post_POPQ_Bp	17	-3.0	-4	0	
Change in Bp	14	3.0	0	5	< 0.01
Pre_POPQ_D	12	-4.5	-8	2	
Post_POPQ_D	17	-8.0	-9	-3	
Change in D	12	4.0	0	10	< 0.01

Interpretation of results

Results show that all 17 patients have their symptoms significantly improved as well as the objective assessment of prolapse. The vaginally-assisted technique is suspected to have an increased risk of erosion but this was not reflected at 12 months in our series. Longer-term follow up is required.

Concluding message

 VALS is a safe and effective minimally-invasive procedure with encouraging patient-reported and objective outcomes at 12 months. The long operative time may be related to initial learning curve and selecting abdominal approach for women with complex recurrent prolapse.

References

- 1. Cochrane Database Syst Rev. 2013 Apr 30;4:CD004014.
- 2. Int Urogynecol J. 2013 Mar;24(3):377-84

Disclosures

Funding: None Clinical Trial: No Subjects: HUMAN Ethics not Req'd: database analysis Helsinki: Yes Informed Consent: Yes