

Vesico-sphincter function modifications after surgery for pelvic organ prolapse

<u>Turco M., Gubbiotti M., Rossi de Vermandois J.A., Salvini E., Quadrini F., Manasse G.C., Illiano E., Mearini E., Giannantoni A.</u>

University of Perugia, Dept. of Surgical and Biomedical Sciences, Perugia, Italy

Aims of study

There are currently few studies about the effects of pelvic organ prolapse (POP) surgery on lower urinary tract (LUT) function using urodynamics.

The main **aim** of this *observational* study was to evaluate the vesico-sphincter function modifications after surgery for POP.

Study design, materials and methods

33 women affected by POP requiring surgery have been *prospectively* included. Patients underwent detailed history, physical examination and urodynamics before and 6 months after surgery.

- Primary end-points: changes in urodynamic parameters evaluated with Blaivas-Groutz nomogram and projected isovolumetric detrusor pressure (PIP1)
- Secondary end-points: changes in clinical and anatomical parameters

Results

At baseline, POP III e POP II were detected in 22 (66.7%) and in 13 (33.3%) pts, respectively.

Abdominal and vaginal approaches were performed in 21 pts (63.6%) and 12 pts (36.4%), respectively.

Primary end-points are shown in the Tables 1 and 2.

<u>Table 1</u>	Baseline 6 mos follow no. pts up (%) no. pts (%)	
Detrusor contractility streight (PIP1)		
Reduced (< 30 cmH2O)	25 (75.8)	17 (51.5)
Normal (30-75 cmH2O)	8 (24.2)	16 (48.5)
BOO (Blaivas-Groutz Nomogram)		
No obstruction	11 (33.3)	20 (62.5)
Mild obstruction	18 (54.6) 11 (34.4)	
Moderate obstruction	3 (9.1) 1 (3.1)	
Severe obstruction	1 (3) 0	

The state of the s	A STATE OF THE STATE OF		
<u>Table 2</u>	Baseline	6 mos follow up	р
Free Qmax (ml/s)	11,3±7,95	19,5±16,8	0,014
PVR (ml)	53±52	27,4±55,4	0,024
DO (n)	12 (36,4%)	16 (48,5%)	0,424
Leakage (n)	13 (39,4%)	12 (36,3%)	0,450
Opening Pdet (cmH ₂ O)	22,18±18,9	19,33±18,07	0,249
Pdet max (cmH ₂ O)	38,27±28,9	29,36±18,39	0,041
PdetQmax (cmH₂O)	25,58±22,86	21,12±16,19	0,235
UDS Qmax (ml/s)	14,33±6,71	18,76±10,38	0,006
UDS PVR (ml)	59,7±95,27	43,03±55,76	0,647

Secondary end-points:

- statistically significant reduction of vaginal bulge (p=0,000), voiding LUTS (p=0,001) and UI (p=0.039)
- LUTS de novo was observed in 2 patients, urgency in 5 patients and urinary incontinence in 1 patient
- Abdominal approach gave better results in urodynamic and clinical parameters.

Interpretation of results

In order to optimally evaluate pre- and postoperative bladder function, we need studies with standardised or validated outcome measures, evaluating urodynamic parameters.

Our results show that detrusor contractility and Qmax drastically improve 6 months after POP surgery, especially with an abdominal approach.

Conclusions

This study shows that **voiding conditions greatly change** in patients who underwent to POP surgery, with a trend to BOO resolution and restoration of a normal detrusor strength 6 months after surgery.

Disclosures Statement:

I have no potential conflict of interest to report.