Jun Ho Lee, MD. PhD Department of Urology National Police Hospital, Seoul, Korea

Conflict of Interest Disclosure: I have no potential conflict of interest to report

Introduction: Thyroid hormones play an important role in cell differentiation and growth. We examine the association between thyroid hormone and lower urinary tract symptoms (LUTS)/ benign prostatic hyperplasia (BPH) and the role of testosterone in their relationships.

Methods

A total of 5708 middle aged men who participated in a health examination were included. LUTS/BPH were assessed using the International Prostate Symptom Score (IPSS), total prostate volume (TPV), maximal flow rate (Qmax), and a full metabolic workup. Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels were measured using immunoassay. We divided participants into quartiles based on their TSH and FT4 levels: first to fourth quartile (Q1 to Q4).

Results: Mean age: 51.1±5.2 years. Mean testosterone: 5.2±1.5 ng/mL. Metabolic syndrome: 41.6%. Mean IIEF:17.7±5.3. Mean TPV, IPSS, and Qmax was 24.1±7.0 mL, 10.6±7.1, and 23.0±8.6 mL/sec, respectively.

Variable		Free T4				TSH				
	Q1	Q2	Q3	Q4	Р	Q1	Q2	Q3	Q4	P
TPV≥30 mL	15.2	16.4	18.0	19.3	.002	17.5	17.9	16.6	16.6	.386
IPSS>7	57.2	56.7	60.3	62.5	.001	59.0	59.7	59.4	58.3	.668
Qmax<10 mL/sec	3.5	3.2	4.1	4.8	.038	4.1	3.2	3.1	5.2	.199

Table 1. Relationships between FT4 or TSH and LUTS/BPH measurements

Table 2. Adjusted ORs of FT4 or TSH for LUTS/BPH measurement

	FT4	Adjusted OR (5-95 confidence interval)	P^a
TPV≥30 mL	Q1	1.000 (references)	
	Q2	1.113 (.910-1.361)	.296
	Q3	1.256 (1.027-1.537)	.027
	Q4	1.364 (1.120-1.662)	.002
IPSS>7	Q1	1.000 (references)	
	Q2	.970 (.837-1.124)	.684
	Q3	1.121 (.963-1.305)	.141
	Q4	1.215 (1.044-1.414)	.012
Qmax<10 mL/sec	Q1	1.000 (references)	
	Q2	.890 (.592-1.338)	.576
	Q3	1.145 (.772-1.698)	.500
	Q4	1.340 (.918-1.955)	.129

Table 3. Relationships between FT4 and TPV according to testosterone level

	Testesterene		 				
	restosterone	Q1	Q2	Q3	Q4	P	
TPV ≥30 mL	≤5.06 ng/mL	16.6	14.8	18.4	18.2	.189	
	>5.06 ng/mL	13.9	18.0	17.7	20.5	.002	

Table 4. Adjusted ORs of FT4 for TPV according to testosterone level

Variable	Testosterone	FT4	Adjusted ORs (5-95	P ^a
			confidence interval)	
TPV≥30 mL ¹	≤5.06	Q1	1.000 (references)	
	ng/mL	Q2	.883 (.663-1.175)	.393
		Q3	1.145 (.864-1.516)	.345
		Q4	1.222 (.851-1.481)	.414
	>5.06	Q1	1.000 (references)	
	ng/mL	Q2	1.394 (1.050-1.851)	.022
		Q3	1.386 (1.036-1.852)	.028
		Q4	1.661 (1.253-2.203)	<.001

Conclusion: We found a possible role of thyroid hormone in the development of LUTS/BPH, and we demonstrated a possible role of testosterone in the relationship between thyroid hormone and TPV