Zane Pilsetniece

Affiliations to disclose⁺:

No disclosures

+ All financial ties (over the last year) that you may have with any business organisation with respect to the subjects mentioned during your presentation

Funding for speaker to attend:

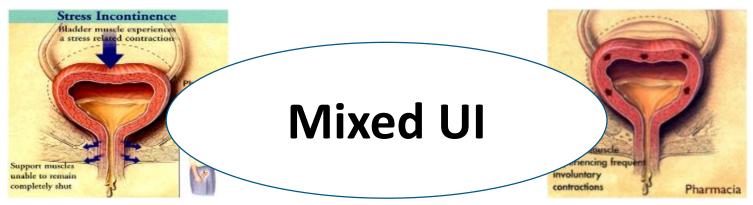
Self-funded

X Institution (non-industry) funded

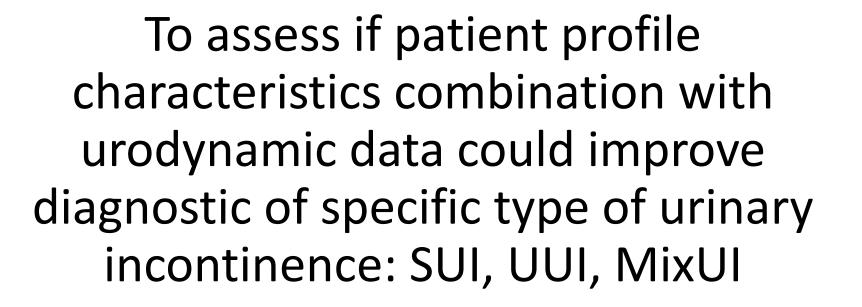
Sponsored by:

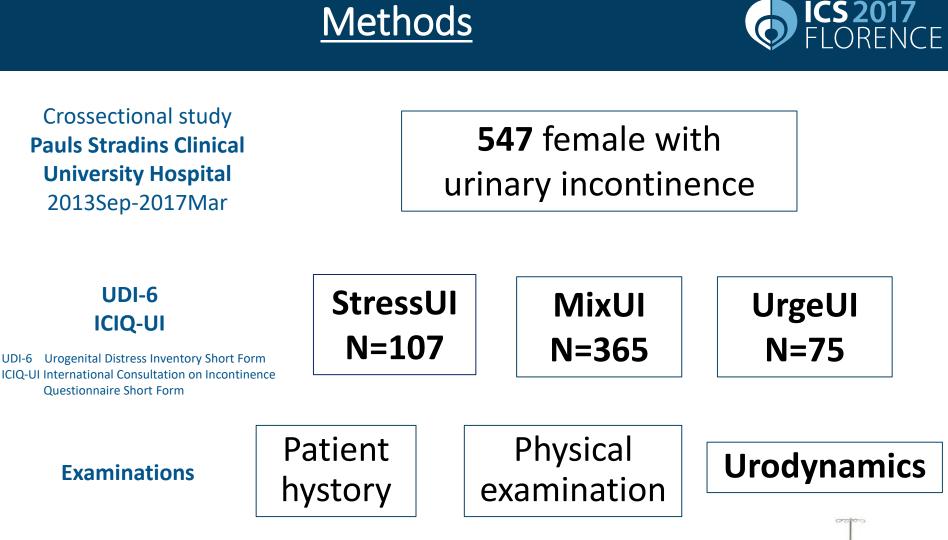
#682 ASSOCIATION BETWEEN CONVENTIONAL URODYNAMICS, CHARACTERISTIC VARIABLES OF PATIENT PROFILE, AND SPECIFIC TYPE OF URINARY INCONTINENCE IN FEMALE PATIENTS

Zane Pilsetniece¹, Egils Vjaters¹ ¹University of Latvia


Introduction

Management of urinary incontinence (UI) in women depends of urinary incontinence type¹

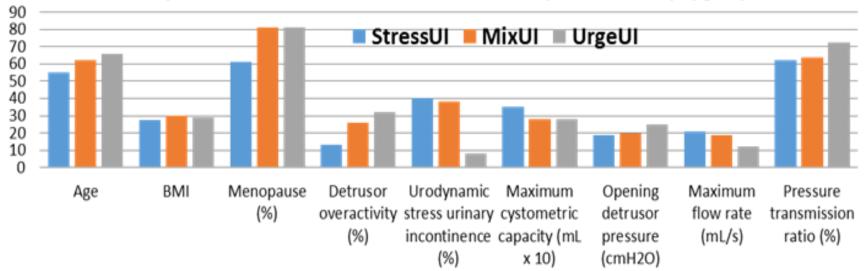

Stress UI

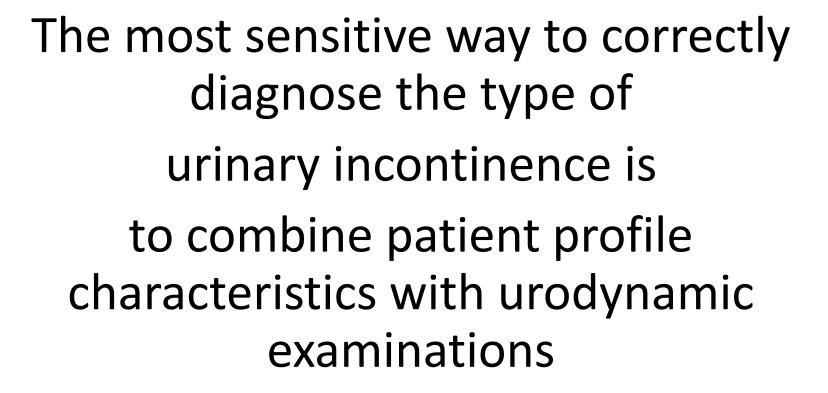

Urge UI

1. P. Abrams, K.E. Andersson, L. Birder, L. Brubaker, L. Cardozo, C. Chapple at al. Fourth International Consultation on Incontinence Recommendations of the International Scientific Committee: Evaluation and Treatment of Urinary Incontinence, Pelvic Organ Prolapse, and Fecal Incontinence. Neurourology and Urodynamics 29:213–240 (2010)

Urodynamics should be performed in order to provide the knowledge on which rational treatment decisions and prognosis can be based²

2. P. Abrams, L. Cardozo, S. Khoury, A. Wein. Incontinence. 5th Edition, EAU, 2013




Urinary Incontinence type	StressUI	MixUI	UrgeUI	р
Variable				
Age**	55 (45–64)	62 (53.5–70)	66 (56–70)	< 0.001
BMI*	27.4 (±5.3)	29.8 (±5.9)	28.9 (±5.9)	0.001
Menopause (%)***	61	81	81	<0,001
Detrusor overactivity (%)***	13	26	32	0.006
Urodynamic stress urinary incontinence (%)***	40	38	8	<0.001
Maximum cystometric capacity (mL)*	353.3 (±131.6)	281.7 (±129)	279.1 (±125.2)	<0.001
Opening detrusor pressure (cmH ₂ O)**	19 (13–25)	20 (14–30)	25 (16–37)	0.008
Maximum flow rate (mL/s)**	21 (15–26)	19 (13–26)	12 (9–18)	<0.001
Pressure transmission ratio (%)**	62 (42–80)	64 (49–75)	72.5 (63–82.8)	0.002
Parity**	2 (1–2)	2 (1–2)	2 (1–2)	0.265
Functional urethral length at rest (mm)*	35.2 (±8.7)	34.2 (±9.2)	36.4 (±8.4)	0.121
Maximum urethral closure pressure at rest (cmH ₂ O)**	62 (44–79)	59 (44–80)	67.5 (51–94.3)	0.064

*Normal distribution, p – one-way ANOVA **Not normal distribution, p – Kruskal-Wallis test ***Qualitative data, p – Pearson's chi-squared test

Analyzed variables results between different urinary incontinence (UI) groups

Thank you!