

Use of Biological Materials in Female Pelvic Floor Reconstruction. What's

new? W25, 16 October 2012 09:00 - 10:30

Start	End	Торіс	Speakers
09:00	09:20	Biochemical evidence in tissue repair	 Ajay Singla
09:20	09:40	What does research say about biological materials	• Dirk de Ridder
09:40	10:00	Clinical evidence in use of biological materials	Rahmi Onur
10:00	10:20	Mesh complications	Paulo Palma
10:20	10:30	Discussion	All

Aims of course/workshop

The aim of this workshop is to familiarise the audience regarding various biological materials which are in use in female pelvic floor reconstruction. What are the complications observed and FDA warning.

Educational Objectives

This has a great educational value for people who are using these products which are made available by the industry. We should be careful regarding their problems.

"Bio"-meshes

Dirk De Ridder

Jan Deprest

Interdepartemental Center for Surgical Technologies Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium

Our laboratory has been supported by unconditional grants from Bard, Cook, Tyco, Ethicon, AMS

Rat (3-90 d) and rabbit model (30d-2 yrs)

Xenografts – experimental data

Host response to acellular collagen matrix

Weak inflammatory response Less pro-inflammatory profile Poor integration Poor vascularization and collagen deposition

d to disrupt (N)	
sruption:	
h	
terface	
1	

Uni-directional stress/strain plot

3

Structure of implant InteXen Pelvisoft

_			

- . Overall comparable performance
- · reherniations in both bio-groups
- 25 % of SIS implants tear at the implant • • Loss of elasticity
- out et al, 2004, AJOG 2008 Trabuco et al, AJOG 2008

long term inflammatory changes

Conclusions - 1

Xenografts "ideal template" for remodelling ?

- · Experimental evidence for induction different host response
- · Non-cross linked materials
 - · Poor early tensiometric resistance
 - · Also disrupt more easily in the implant
- · Cross linked
 - Stronger on tensiometry
 - · Occasional degradation and loss of elasticity

Ideal biomesh not designed yet

Clinical data - anterior compartment

	N	Product	Follow up	
Leboeuf	19	Pelvicol	15.0 mo	
Urol 2004 Consec cases	24	Ant colp	13.0 110	
Chaliha	14	SIS	24.0 mo	
Int J Urogynaecol 2005 Case control study	14	Ant colp	24.0 110	
Meschia	98	Pelvicol	12.0 mo	
Urol 2007 Randomized trial	101	Ant colp	12.0 110	

Clinical data – anterior compartment

recurrences	N	Product	Anterior Stage II	Anterior Stage III	Mid	posterior
Leboeuf	19	Pelvicol	-	6.9%	0%	0%
Urol 2004 Consec cases	24	Ant colp	-	0 %	0 %	0 %
Chaliha	14	SIS	At 6 mo significantly better for D and TVL			
Int J Urogynaecol 2005 Case control study	14	Ant colp	After 2 years no anatomic differences			
Meschia	98	Pelvicol	7%	2%	3%	3%
Urol 2007 Randomized trial	101	Ant colp	19 %	2%	3%	8%

* Ba >-1

Richard Foon · Philip Toozs-Hobson · P. M. Latthe

raginal wall prolapse
effectiveness

ist Ungened J (2008) 19:1077-1706

Sacrocolpopexy using xenografts observational cohort study

consecutive laparoscopic sacropexies . 50 xenografts

(21 SIS, 29 pelvicol)

Follow up

- Yearly telephone interview (Kobashi, 1991) 95% clinical assessment for study (Claerhout, 08) • •
- . POP-Q, QoL (Kings)

Claerhout et al, Europ Urol 2008

Sacrocolpopexv	usina	xenografts
out of outpop only	aomg	xonograno

@ 32 months follow up	SIS 21	Pelvicol 29	Polypropylene 100
Objective failure (C≥-1)	22%	19%	3%*
Reoperation vault prolapse	2 (10%)	3 (10%)	0 (0%)*
Infection/exposure	2 (10%)	2 (10%)	6 (6%)
Reoperation GRC	0	1 (3.5%)	7 (7%)

Comparable demographics - no significant functional differences in prolapse, urinary, defecation and sexual function (Deprest et al, submitted Obstet Gynecol 2008)

Sacrocolpopexy using xenografts

Clinical data - vault

	N	Product	Follow up
Quiroz et al AJOG 2008	102	Pelvicol	1.1 yr
Consecutive cases Retrospective study	134	Polypr	1.1 yr
	23	Fascia	1.1 yr
Altman et al Urol 2006			
Consecutive cases Retrospective study	25	Polypr	7.1 mo
	27	Pelvicol	7.1 mo

Clinical data – vault								
recurrences	N	Product	Follow up	Vault recurrence	anterior	posterior		
Quiroz et al	102	Pelvicol	1.1 yr	11%* (8% reop)	7 %	3 %		
Am J Obstet Gyn 2008 Consec cases	134	Polypr	1.1 yr	1%	1%	1%		
Retrospective Mean follow up: 1.1 yr	23	Fascia	1.1 yr	(1/15)	0	0		
				Stag	je II recurrer	nce		
Altman et al	25	Polypr	7.1 mo	24%				
Urol 2006 Consec cases	27	Pelvicol	7.1 mo		29%			

Clinical da	ata	– pos	terior o	ompar	tment
recurrences	N	Product	Follow Up	posterior Stage II*	Local problems
Paraiso et al	37	Posterior repair			
Am J Obstet Gynecol 2006	37	Site specific repair	17.5 mo		
Randomized trial	32	+SIS augment			

Conclusion

- No graft complications
- Faster and more severe failure with graft

* Bp ≥-2

Conclusions - 2

- The results are at present conflicting ٠
 - Even RCT material typically dubious in nature
 - Variety of materials and techniques
 - Inherent short follow up with new material
- Anterior: argument for graft augmentation
 - Underpowered for functional benefit
 - Same results with synthetic material (absorable) €
- · Middle and posterior: point not proven

 - Local complications not includedPoint at importance of long term follow up for anatomical endpoint
 - Even arguments against...
 (These) materials should be used within trials
 - (?) PRIOR TO THEIR SALES (?)

1 Biomaterials in Female Pelvic Floor Reconstructive Surgery

Ajay K Singla, MD, FACS, FICS Associate Professor Department of Urology and Gynecology Wayne State University

² Total Female Population In U.S.

- 20 million 30-39 years
- 21.4 million 40-49 years
- 15.8 million 50-59 years
- 10.7 million 60-69 years
- Total procedures per year 180,000

3 Incontinence - Incidence

- 6.5 million women in US has SUI
- 10-35% of women 15-54 years age
- 30-50% of women over 60 years age
- 15-20% of women with recurrent SUI
- 15-20% of women with urge incontinence or other dysfunction following surgery
- De novo urge incontinence in 10%-30%
- Bladder outlet obstruction in 2.5%-24%

4 Cost of Incontinence

- \$23.9 billion for evaluation & treatment
- \$4.2 billion for Home Health Care associated with incontinence
- Total of \$28.1 billion spent on incontinence in 1995 in United States

5 SUI Surgery Prevelance

- prevalence of in-patient SUI surgery US¹
 - 48,345/yr 1979
 - 135,000/yr 1998
 - 103,467/yr 2004
- ASC visits for SUI ²
 - -15/100,000 1994
 - -34/100,000 2000

6 Prevelance of Pelvic Organ Prolapse (POP) Surgery

- prevalence of vaginal prolapse surgery US ^{1,2}
 - ->200,000/yr
 - 29% reoperation rate within 4 yr
- Life time risk to undergo surgery for POP/SUI 11.1%²
- 7 Science Behind Biomaterial Use

Pelvic organ support & Continence rely on:

- ➤ Endopelvic fascia
- Ligament support
- Pelvic floor muscles

8 Biochemical basis for Pelvic floor support

connective tissue fibroblast

collagen type I & III

compliance elastin tensile strength & flexibility fiber stabilization

cross linking proline & hydroxyproline amino acids

9 Science Behind Biomaterial Use

- Decrease in total collagen content in women with POP and SUI as compared to controls1
- Increase in matrix metalloproteinase (MMP) a collagen degradation enzyme
- Decrease inhibitors of MMP expression in vaginal tissues
- Increase in degradation of elastin in women with POP and SUI
- Decrease in alpha1-antitrypsin mRNA level elastin degradation inhibitor

10 Historical Perspective

- Goebel 1910 Pyramidalis Ms
- Price 1933 Rectus fascia (attached)
- Aldridge 1942 Rectus fascia strips (paired)
- McGuire 1978 Rectus fascia
- Blavais 1991 Fascial strip (free)
- Beck 1988 Fascia Lata
- ■Raz 1989
 - 89 Vaginal wall Cadaveric fascia Lata

11 D Types of biomaterials

Absorbable

Handa

-Autograft (autologous)

1996

- Allograft
- Xenograft
- Absorbable synthetic mesh

- Non-absorbable
 - Synthetic mesh

12 Autograft

- Rectus fascia
- Fascia lata
- Rectus muscle
- Gracilis muscle
- Vaginal mucosa

13 Allograft

- Fascia lata
 - FasLata
 - Suspend

- Dermis
 - Urogen
 - Axis
 - Repliform
 - Dermal Allograft

14 Xenograft

- Porcine dermis
 - DermMatrix
 - Pelvicol
- Porcine SIS
 - Stratisis
 - FortaFlex
 - FortaPerm
- Bovine pericardium
- Veritas

15 Types of Synthetic Mesh

- Absorbable
 - -Vicryl (polyglactic acid)
 - Dexon (polyglycolic acid)
- Non-absorbable
 - Nylon
 - Silastic
 - Dacron (mersilene)
 - Marlex
 - -Gore-Tex
 - Prolene

16 Synthetic material

- Pore size (macroporous vs microporous)
- Construction (monofilament vs multifilament)
- Weave (woven, knitted, thermal bonded)
- Flexibility or elasticity
- Additives or coatings (silicone, antibiotics, collagen)

Most meshes manufactured for sling surgery are:

Monofilament, loosely woven or knitted, elastic, macroporous polypropylene (standard of care)

17 Classification of Synthetic Mesh

■ Type I – macroporous / monofilament

- Atrium, Marlex, Prolene and Trelex
- Type II microporous / multifilament

Gore-Tex

Type III – macroporous with multifilament

Teflon, dacron (mersilene), woven polypropylene and PTFE

Type IV – Mesh with submicronic pores coated with silicone

silastic, cellgard, dura substitute

18 🔲 History of Cadaveric fascia

■ More than 200,000 soft tissue allograft transplants done annually in US

- Cadaveric fascia has been in clinical use for 3 decades
- Ophthalmological uses
 - Orbital floor reconstruction
 - -
- Orthopedic uses
 - Anterior cruciate ligament repair

19 Donor Screening

- HIV 1&2 Ab
- Hepatitis B Ag & Ab
- Hepatitis C Ab
- HTLV 1/11 Ab
- Syphilis
- HIV DNA by PCR

20 **Tissue Processing**

- Most common: Freeze dried (Incubation in 70% isopropyl alcohol→ Frozen→gamma irradiation @ 25 Kgy)
- Freeze dried (Urogen, FasLata, Dermal allograft, Stratisis, Repliform
- Fresh Frozen (DermMatrix, Stratisis)
- Solvent dehydrated and gamma irradiated (suspend and axis tutoplast)
- Cryopreservation and amorphous freeze drying (Repliform)

21 Processing and Strength

- Sutaria and Staskin:
- Comparison of tensile strength between freeze dried alone, freeze dried and gamma irradiated, solvent dehydrated-gamma irradiated
- No stastical difference was noted using tensiometer

J Urol 163A 1194,2000

22 🔲 Tissue strength

Lemer et. Al:

- Maximum load to failure (MLF), stiffness assessed in autologous, freeze-dried, solvent dehydrated fascial grafts and dermal graft using tensiometer
- MLF and stiffness equivalent in autologous and solvent dehydrated fascial graft and dermal allografts
- Freeze dried allografts had lower MLF and were less stiff

Neurourol 18:497,1999

23 Tissue Strength

- Choe et.al:
- Comparison of tensile strength (MLF) between allograft (freeze-dried gamma irradiated cadaveric fascia lata, cadaveric dermis), autologous (dermis, rectus fascia, vaginal mucosa) and synthetic (Gore-tex and prolene) mesh using tensiometer.
- Cadaveric fascia lata >cadaveric dermis >Gore-tex >prolene >human dermis >human rectus fascia >vaginal mucosa.

UROLOGY 58(3),2001

24 Safety of Cadaveric tissue

- Risk of HIV transmission from blood transfusion
 - 1/400,000 to 1/600,000
- Risk of HIV transmission from donor tissue - 1/1,667,600
- One documented case of HIV transmission from bone allograft in 1985

25 Safety of Cadaveric tissue

Prions ("slow virus"):

- Naturally occurring protein molecules located in CNS
- PrPc prions are mutated due to infectious agent
- Originally discovered after cannibalistic tribe in New Guinea found to die from progressive destructive brain disease.

26 Prion diseases

- Kuru
- Primates Primates
- Creutzfeldt-Jacob Pr ■ Scrapie Sheep
- BSE (mad cow) Cattle
- vCJD (injested tainted beef) Man
- Risk of transmission unknown

27 Prion diseases

- No known cure
- Inactivation is resistant to
 - Heat exposure
 - Gamma irradiation
- Alkaline treatment is thought to inactivate prions

28 Bacterial Contamination

- Study of 36 women undergoing cadaveric fascia lata sling
- - Cultures of allograft sent immediately prior to surgery:
 - 5/36 grew organisms
 - One developed superficial wound infection
 - Clinical significance of these findings unclear

Gerber, et.al, Urol 163A:735,2000

29 DNA contamination

- 4 different types of human fascia lata allograft, all processed by 4 different techniques extracted for DNA content.
- Total DNA concentrations ranged from 0.3 3.0 mcg/mg tissue
 - Sadhukhan et.al. J Urol 161A:396,1999
- 30 🔲 Tissue Reaction

- 30 female rabbit bladders exposed to
 - Synthetic sling vs. cadaveric fascia vs. control
- Histologically examined at 6 and 12 weeks

31 Tissue Reaction

32 🔲 Cadaveric fascia failure

- 12 women failed cadaveric fascia (12%)
 - Allografts were freeze dried and irradiated
 - 3x10 cm strips used for PVS in 35 women
 - »6 failed (1 week to 4 months)
 - 6x 16 cm strips used for sacrocolpopexy (67)
 »6 failed (7–11 months)

Fitgerald, et.al, Am. J. Obstet. Gynec.181:1339,1999

33 🔲 Cadaveric fascia failure

- Findings at re-operation:
- - Graft remnants found in 7 patients
 »Often thin and attenuated

No tissue found, only suture in 5 patients

34 🔲 Cadaveric fascia failure

Histology:

 Some areas with appropriate remodelling, linear orientation of fibrocytes within connective tissue, except high tensile strength

- Other areas haphazardly arranged, non-inflammatory scar- like tissue, some areas with inflammatory response, still other areas with tissue degeneration.

35 Allograft Concerns

- Transmission of bacterial or viral disease
- Transmission of prions
- Durability
- Degradation of allograft
- Inconsistent quality from some tissue banks
- Cost
- Depletion of tissue banks
- Increased operative time and patient morbidity
- Unpredictable host response

36 Synthetic Material

- Type of Material:
- Monofilament
 - Prolene
- Multifilament
 - Mersilene
 - -Gore-tex

- *Bacteria enter into multifilament *Macrophages and PMN's cannot 37 Synthetic Material Pore Size: -Larger pores > tissue bonding »Prolene > mersilene > marlex > Gore-tex 38 Synthetic Material Advantages: - Abundant - "off the shelf" - Decreased operative time - Durable - permanent - Cost - inexpensive - Independent of tissue re-modeling - Resistant to degradation - Long term preservation of tensile strength Risks: - Infection »Prolene 0-3%, Mersilene & Gore-tex 5-23% - Erosion - Failure of remodeling 39 Ideal Material Biocompatible Acellular Abundant collagen Abundant elastin Preserved extracellular matrix High tensile strength Durable Free of Infection and erosion Inexpensive 40 Applications In Urology Sling surgeries in women for SUI Sling surgeries in men for SUI Pelvic floor reconstruction in women Urethral reconstruction in men Penile reconstructive surgeries ■ Bladder reconstruction/replacement? 41 **Future Sling Materials** Hybrid Sling Materials
 - - Combination of allograft and synthetic material
 - Combination of xenograft and synthetic material

- Engineered Tissues

- Cells grown in tissue culture on matrix to create sling
- Myoblast taken from muscle biopsy from the patient

42 🔲

43 Methodology

- We evaluated 4 different sling materials
 - Small intestinal mucosa (SIS) (Cookbiotech)
 - Fascia lata (FL) (Coloplast Corp)
 - Fascia dermis (FD) (Coloplast Corp)
 - Pelvicol (P) (C.R.Bard)
- All currently used in patients clinically

44 Methodology

- Biomaterial was implanted intraperitoneally at the bladder neck of female Balb/c mice (n = 64)
- Animals were sacrificed at 2, 4, 8, or 12 weeks post-implantation
- Bladder and implants were extracted and fixed for histological analysis

45 Methodology

- Implant Histological Analysis:
- - Cell Count (cells/um²)
 - Cell Morphology (aspect ratio)
 - Capsule formation (collagen deposition)
 - Capsule thickness (um)
 - Angiogenesis (CD31)

- 46 Capsule Thickness: 2 Weeks Implantation
- 47 Capsule Thickness: 12 Weeks Implantation

48 🔲 Cell Number

None of the implants displayed a significant change individually in cell number during the 12 weeks

However, Pelvicol had significant decrease in cell number as compared to all other groups

49 Cell Morphology

■Aspect ratio correlates with cell morphology

-Smaller round cells indicate inflammatory cells

- -Longer cells indicate a fibroblastic type of cell
- At specific time points there was significance between groups

However, no implant had a significant change over the 12 weeks

5/30/2012

■ Autologous fascia became highly distorted at 12 weeks.

59 conclusions

- Significance of tensile strength is unknown
- Stiffness is more important than tensile strength.
- The stretching of a sling with time is more likely scenario than breakage and may be responsible for the recurrence of incontinence
- Low tensile strength may explain difficulty in manipulating sling tension for recurrent incontinence
- Stiffness of mesh increased with incorporation of surrounding tissue
- The biomechanical results support the use of polypropylene mesh for sling surgery relative to other non-autologous materials.

```
60 NICE Review
```

- 61 Objective Failure Rate
- 62 Objective Failure Rate
- 63 Failure rate for anterior prolapse
 - No mesh 28.8%
 - Synthetic non-absorbable mesh 8.5%

 - "The objective failure when using non-absorbable synthetic mesh was significantly lower than without mesh/graft"

64 🔲 Low Rate of Erosion

65 Erosions

- Clearly a risk 10% in literature
- With better surgical technique/more care with the vaginal wall dissection current studies demonstrate a much lower incidence – 2-5%

66 How well do we do with traditional prolapse repairs?

- Randomized trial
- Median follow up of 23 months
- Findings Success rates
 - Anterior plication 30%
 - Plication with absorbable mesh 42%
 - Ultralateral plication 46%
- Many of these did not require further repair
- But What will happen at 5 or even 10 years?

67 Why such a high failure rate?

- Tissue Factors
 - Multiple studies show differences in tissue between women with prolapse and those without – vaginal tissue, skin and other sites

68 Why such a high failure rate

- Tissue Factors
 - Multiple studies show differences in tissue between women with prolapse and those without – vaginal tissue, skin and other sites

■ Thus – are we really helping by suturing weakened, possibly defective tissue back

together?

69 Paradigm of General Surgery: Hernia Repairs

For decades inguinal and abdominal wall hernias were repaired by suturing native tissue to native tissue

- More recently many have started to use synthetic mesh with improved results
- Can we follow this paradigm?
- 70 🔲 Mesh Repair Kits

71 Outcomes

- National Institute for Health and Clinical Excellence (NICE) report

 Provides national clinical guidelines in the United Kingdom
- Examined surgical repair of vaginal prolapse using mesh
- 199 page document
- Evaluated 446 reports 49 studies selected
- 4569 patients in total

72 Poor Surgical Outcome with Allograft

- 73
- 74 🔲
- 75 🔲
- 76 🔲
- 77

78 🔲 Failure of Allograft

- Variable host response
- Method of tissue processing
- Site of harvest
- Quality of harvested graft

79 Small intestinal submucosa (SIS)

- Prepared from submucosa of small intestine of pigs and is replaced by host tissue in 90-120 days
- SIS contains
 - Collagen
 - Growth factors
 - Transforming growth factor- alpha
 - ■Fibroblast growth factor-2
 - Glucosaminoglycans
 - Glycoprotein
- Minimal tissue reaction
- Biocompatible
- High tensile strenghth

80 SIS in Pubovaginal Sling

Literature Review

52
4 yrs
42 (93.4%)
3 (1.98%)
(4.06%)

81 Our Experience with SIS

■Total patients		22
PVS (4-PLY)	15	
■ PVT (8-PLY)	6	
Male Sling (4-PLY)	1	

82 Our Experience with SIS

■ PVS	
Cured	12
Improved 2	
Failed	1
■ PVT	
Cured	3
Improved 1	
Failed	2
Male Sling	
Cured/Improved	1

83 🔲 What Do I Use

Hypermobility

 Polypropylene mesh (TOT)
 ISD
 First time – SIS pubovaginal sling
 Re do - Autologous fascia

 POP

 vaginal – allograft
 sacrcolpopexy – polypropylene mesh

84 🔲 FDA Regulation

- FDA classify all implantable devices into 3 regulatory classes based on the degree of regulation necessary to provide device safety and effectiveness. (1976 amendment)
- Sling materials are included in class II devices and are subject to general controls and special controls. It requires data from human clinical trials, post-market surveillance, patient registries. (1990 amendmend)

85 🔲

- Biomaterial Any natural or synthetic substance that incorporates or integrates into patients tissues.
- Biocompatibility Ability of a material to perform with an appropriate host response in a specific situation.
 - It needs to be integrated properly into the tissues
 - Generate an appropriate inflammatory response
 - Maintain mechanical integrity (hold shape)

- 86 🔲
- 87 🔲

88 Criteria for Ideal Synthetic Sling

- 1. The material should be chemically inert.
- 2. Not to be modified by tissue fluids.
- 3. Not induce inflammatory response or antibodies.
- 4. Not be carcinogenic.
- 5. Not induce allergy or hypersensitivity.
- 6. Be able to resist mechanical stress.
- 7. Be manufactured in the required shape.
- 8. Be able to be sterilized.
- 9. Resistant to infection.
- 10.Be resistant to adhesions.
- 11. Have a better in vivo response than autologous tissue.
- 12.Cost effective

1.

<u>Clinical results of biological and synthetic graft use</u> <u>in pelvic organ prolapse surgery</u>

Rahmi Onur, MD. Department of Urology, Firat University, Faculty of Medicine,

Elazig-Turkey.

Pelvic floor dysfunction associated with prolapse is a common disorder affecting a substantial number of women in almost every population. It may occur in up to 50% of paraous women (1,2). Seven to 11 % of women will undergo surgery for prolapse during their lifetime and 29 to 30 % of those may require repeat operation for recurrent prolapse (3,4). Surgical cure rates vary depending on the technique used. Originally described traditional repair techniques, the anterior and posterior repairs, rely on adequate tissue for successful repair. Thus, use of attenuated or weak tissue for primary repair may provide poor results (5). In an attempt to improve prolapse surgery outcomes, several biological and synthetic materials have been used during pelvic reconstructive surgeries.

Any natural or synthetic substance that incorporates or integrates into a patient's own is defined as a "biomaterial" (6). The biomaterials or grafts used in pelvic reconstructive surgeries are classified into two basic types: biologic and synthetic. Further types and characteristics of these materials are summarized in Table 1.

Table 1. Types of materials or grafts used in pelvic organ prolapse repair (5,7,8).

A. Biologics:

1- Autologous fascia: Rectus fascia, fascia lata, vaginal mucosa, skin graft

2- Heterologous:

- i) Allogenic: Cadavaeric- Dura matter, Rectus sheath, Fascia lata, Dermis,
- ii) Xenogenic: Porcine dermis, small intestine submucosa, bovine pericardium, fetal bovine dermis.

B. Synthetics:

 Absorbable: Polyglycolic acid, polyglactin, polyglactin/polypropylene
 Non-absorbable: Polyester, polytetrafluroroethylene (PTFE), polypropylene, Polyethylene, and nylon The aim of using either biological or synthetic grafts is to provide adequate support to pelvic floor by reinforcing existing tissue. This is one of the main indications for graft use in pelvic reconstructive surgery. Other common indications: nonexistent or suboptimal autologous tissue, connective tissue disorder, unavoidable stres on the repair, the need to bridge a space, concern about vaginal length or caliber, and pelvic floor denervation, patients who failed previous surgery (4). On the contrary, pelvic radiation, poorly controlled diabetes, severe vaginal atrophy, and predisposition to infection such as systemic steroid use, active vaginal infection and heavy tobacco use are termed to be contraindications for use of graft materials in pelvic organ prolapse repair (4,9).

Development, processing and characteristics of prosthesis are beyond the scope of this review and will be discussed elsewhere in this course. In this review, it was aimed to provide available data about the efficacy and clinical use of biological or synthetic grafts in pelvic organ prolapse treatment.

<u>Clinical Results:</u>

Recently, it was reported that nearly half of the surgeons used minimally invasive transobturator devices for cystocele repair and nearly all use synthetic mesh in procedures either for stress incontinence and/or POP treatment (10). Dissatisfaction with traditional repairs has led to more frequent use of grafts. Long-term success rates with biologic or synthetic mesh were reported to be between 68-100% for abdominal sacrocolpopexies (ASC), ranged from 84 to 100% for posterior repairs. Success rates are not consistent for anterior repairs (2,11). Since there are only few prospective, randomized controlled studies evaluating the success rates and complications of graft use in pelvic reconstructive surgery, it's not possible to make definitive conclusions. Recently published studies involving different types of grafts used in vault apical, anterior and posterior prolapse surgery will be addressed in this review.

Apical prolapse

Abdominal sacrocolpopexy using synthetic mesh is defined as the "gold" standard treatment for apical vaginal prolapse (8,12). Success rates for this procedure range from 78 to 100% over a follow- up period of 6 months to 3 years (13). Longer term follow-up data is also available in another study and for up-to 13 years after ASC, 74% success rate was maintained (14). Laparoscopic sacrocolpopexy was also shown to have similar short-term outcomes comparable with the abdominal approach (7). Operative outcomes with follow-up periods with use of different mesh types are consistently high in ASC and are listed in Table 2. However, allogenic graft material use in ASC showed a high short-term failure rate (15). In two prospective trials comparing treatment success of synthetic and biological meshes for ASC, Culligan et al reported significantly higher failure rates in women receiving solvent dehydrated fascial grafts at 6th months postoperatively compared to women receivng synthetic mesh (16). Similarly, use of synthetic mesh was also found to be superior to use of freze-dried cadaveric fascia for ASC surgery in a retrospective cohort study. Higher success rates were obtained when mesh was used (89%) compared to allograft use (61%) (17). On the contrary, Fitzgerald et al, reported on a series of 67 women who underwent ASC with cadaveric fascia lata and determined failure of the procedure in 8% at a follow-up period of 6-11 months (15).

Author	n	Mesh type	Follow-up (mo)	Success (%)
Gregory et al (17)	28	Marlex/Mersilene	26.3	89
Culligan et al (16)	54	Polypropylene	12	91
Altman et al (18)	25	Prolene	7.4	71
Rust et al (19)	12	Mersilene	9-42	100
Addison et al (20)	56	Mersilene	6-126	89
Baker et al. (21)	59	Prolene	1-45	86
Tate et al. (22)	29	Polypropylene	60	93
Granese et al. (23)	131	Polypropylene	43 mo	94.9
Fox and Stanton (24)	29	Teflon	6-32	100
Snyder, Krantz (25)	147	Gore-Tex	60	73
Valaitis, Stanton(26)	43	Teflon	3-91	91

Table 2. Operative outcomes with use of different mesh	h types in abdominal sacrocolpopexy.
--	--------------------------------------

Treatment of apical and vault prolapse may also be carried out by transvaginal route. Benson et al., treated 88 women by randomizing to a vaginal (bilateral sacrospinous vault suspension and paravaginal repair) or abdominal (sacrocolpopexy and paravaginal repair) surgical technique. The treatment outcome was considered as unsatisfactory in 33% of the vaginal group and 16% of the abdominal group (27). In another study comparing two techniques optimal results were obtained in 80.3% of women in the vaginal group and 94.2% in the abdominal group (28). However, Maher et al, after 2 years of follow-up, reported equal treatment successes as 91% and 94% in vaginal and abdominal sacrocolpopexy groups, respectively (29). Considering these three trials which were considered to be similar enough to allow comparison of these two techniques revealed that ASC was better than vaginal treatment in terms of: a lower rate of recurrent vault prolapse, less postoperative dyspareunia, less postoperative stress incontinence, lower reoperation rate for prolapse (27-29).

Posterior intravaginal sling (PIVS) or intravaginal slingplasties using synthetic mesh are other alternatives for the treatment of apical vault prolapse (8). Petros first described this technique as a less invasive method and reported a success rate of 94% in 71 patients with 5.6% complication rate (30). Literature consists of several studies with intravaginal slingoplasties that have used nylon, polypropylene, polyglactin/prolene and prolene meshes and success ranged between 71%-100% (8). In another study, 118 consecutive women underwent PIVS operation for Pelvic Organ Prolapse Quantification stage 3 or 4 vaginal cuff prolapse. At a mean follow-up of 58.6 months, the success rate of PIVS was 96.6% (31).

For sacral colpopexy using polypropylene graft, mesh erosion or extrusion rates were reported to be around 2% as suggested by IUGA/ICS (5,32). These rates were found to be higher with microporous, multifilament meshes such as Gore-Tex and Mersilene (33). Nygaard et al., reviewed 2178 women who underwent ASC and reported 3.4% erosion. Erosion rate was highest for Teflon, Marlex and Gore-Tex (appr. 5%) whereas, it was less

than 1% for prolene (13). Gastrointestinal complications such as ileus and small bowel obstruction may also be detected after ASC operation. Women were reported to experience 5.9% ileus or small bowel obstruction with 1.2% of patients requiring operation (34). However, there's enough support in literature for the use of polypropylene mesh. Thus, as National Institute of Health and Clinical Excellence recommends, polypropylene mesh use in ASC surgery may be termed as a safe and efficacious method of vaginal vault prolapse repair (35).

Anterior compartment

Traditional treatment of anterior vaginal prolapse with patient's native tissue (anterior colporraphy) has been reported to have a high failure rate both for primary and secondary cases (35). The risk for failure after classic anterior repair was found to be 30% within 4 years of the original surgery (36) and several other prospective studies have demonstrated that anterior colporraphy alone has a success rate of 37% to 57% (37,38). Synthetic and biological materials at the time of anterior repair are used in order to improve outcomes of this surgery.

Although synthetic grafts are widely used in the treatment of anterior repair, the majority of the reported studies are retrospective case series and success rates are highly different (8). These differences occur since authors use distinct definitions for outcomes, success and use different materials. Moreover, classification of anterior prolapse and treatment are not standardized in every study. Nevertheless, anatomic cure rates using polypropylene meshes and new prosthetic kits ranges from 75.7% to 100% (35). Sand et al, in their prospective randomized study, compared use of polyglactin 910 mesh placed during anterior repair to classic treatment. They concluded that mesh reinforced treatment had significantly lower recurrence rate compared to controls (25% vs 43%, P= 0.02) (37). Most studies use "tension-free" technique for transvaginal mesh placed anterior repair. Mesh related

complications occurred in 14.6% of patients with 9.1% mesh extrusion (39). Similarly, Hoenil et al., and Deffieux et al, used commercially available tension free kits and reported 94.5% and 94.3% success rates, respectively (40,41). However, mesh extrusion rates in the latter study was found to be 20% (41). Considering the efficacy of recurrent cystocele, 24 women allocated to anterior colporraphy alone or reinforcement with mesh. Authors anchored the prosthesis proximally to the vaginal apex and laterally to the levator fascia after standard colporraphy and at 24 months' follow-up, prolapse treatment was 100% in the mesh group whereas, it was 66% in women who received anterior colporraphy alone (42). In a prospective observational study, Milani et al found 94% success rate with Prolene mesh at a 17-month follow-up, but there was an erosion rate of 13% (43). Salvatore et al, reported a similar complication rate with 13% erosion and a significant increase in overactive bladder symptoms (56%), dyspareunia (78%) after mesh placement (44). In ten randomized controlled studies (1148 women), it was shown that mesh/graft use for anterior repair was beter than no mesh for preventing recurrence (45). Thus, nonabsorbable mesh use for anterior prolapse repair is accepted to have high success rates but seems to have unacceptably high complication rates in some series (5).

In an attempt to decrease the complication rates and particularly erosions, biological grafts were introduced for anterior repairs. In terms of biological materials, Salomon et al., reported anterior prolapse repair using porcine dermal implant through the transobturator route. Anatomical cure was present in 81% of women whereas 19% had recurrence or persistence (46). In a retrospective review, Gomelsky et al, 70 women underwent surgical repair of high grade cystocele with porcine dermis interposition grafts. The graft was secured to arcus tendinous fascia pelvis (ATFP). More than 90% of patients had no failure at a mean follow-up of 24 months (47). Using same graft for the correction of advanced anterior vaginal prolapse, a 4 x 12 cm segment was secured bilaterally to the ATFP. At 2 years followup, an

overall cure rate of 78% was reported (48). Systematic review and meta-analysis for using mesh or grafts in the treatment of anterior compartment prolapse revealed the evidence that there was a trend in the crude objective failure rates with procedures not using mesh/graft having the highest failure rate, followed by procedures with absorbable synthetic mesh, biological graft, and non-absorbable synthetic mesh with decreasing order (45). However, Cervigni et al., compared Prolene Soft with Porcine Dermis with a mean follow-up of 8 months in anterior repair. The objective falure rates were found to be similar between groups (49).

The primary aim of using absorbable mesh was to achieve equivalent success rates with fewer complications. Polyglactin 910 has been examined in several studies and concluded that it led to significantly decreased recurrence rate compared to traditional colporraphy (5). Similarly, Maher et al., supported this finding and observed that use of Polyglactin 910 had higher cure rates when compared to fascial repair only (75% vs 57%) (50). Considering the efficacy of cadaveric tissues in anterior prolapse repair, Ghandi et al, found decreased recurrence rates with the use of cadaveric fascia lata versus standard repair (51). Kobashi et al., used cadaveric fascia lata secured by anchors attached to the pubic bone vaginally, and sutured laterally and posteriorly to the vault for treatment of primary cystocele. No failures or complications were observed at a short follow-up (52). In another study, Frederick et al., examined 251 patients and at a short follow-up (6 months), cadaveric sling us efor anterior prolapse showed 93% cure (53). However, Clemons et al, had only 59% success rate by using AlloDerm graft for anterior compartment treatment (54). Considering the comparative studies on the use of biological graft use in the anterior compartment and anterior colporraphy, a total of 4 RCT were available and two of these studies favored use of biological grafts for better results whereas, other 2 retrospective studies demonstrated no difference in outcomes (55). Thus, there's no sufficient data to conclude whether biological

grafts offer advantages or disadvantages in anterior prolapse repair compared with traditional repair without graft. Results of various trials are summarized in Table 3.

Author	n	Mesh type	Follow-up (yrs)	Success (%)
Chaikin et al (56)	17	Cadaveric fascia	0.6	100
Groutz et al (57)	21	Cadaveric fascia la	ta 1.7	100
Gandhi et al (51)	-	Cadaveric fascia	1.1	79
Chung et al (58)	-	Cadaveric dermis	2	84
Weber et al (38)	56	Polyglactin 910	2	42
De Tayrac et al. (59)	84	Polypropylene	2	91.6
Migliari et al. (60)	15	Polypropylene	1.3	75

Table 3. Outcomes with use of different mesh types in anterior repair

There's currently mixed evidence to support graft use in every case with anterior compartment prolapse. Although graft reinforced anterior prolapse repair in recurrent cases were shown to have higher success rates in women whom no graft was used, there's still controversy in literature and further large prospective studies are required. Major concern after prolapse surgery is development of complications such as; mesh extrusion, dyspareunia, de novo urgency. Several retrospective or case studies showed excellent results whereas, serious complications were reported in other series (8).

Posterior compartment

The success rates with traditional posterior repairs range between 76% to 96% (5,35). Thus, it's questionable for further search for a new technique or graft use for posterior prolapse repair. There are no large series and randomized studies comparing graft versus no graft (61). Moreover, synthetic meshes are used less frequently, whereas absorbable meshes were not shown to have better results than traditional repair (35).

In a retrospective study, Lim et al., used polyglactin/polypropylne mesh and after 6 months of follow-up, there was a cure rate of 83.9%. The erosion rate was 12.9% in this group. Postoperative constipation was present in 18%, difficulty with defecation occurred in

20.5% and de novo dyspareunia was detected in 3.4% (62). Sand et al., randomly assigned women to receive mesh or no mesh for posterior prolapse repair. No significant improvement was detected between two groups (mesh: 91.2% vs no mesh: 90%) (37). Milani used prolene mesh both for anterior and posterior repairs and reported 6.5% erosion rate and 63% increase in dyspareunia (63).

Recently, biological materials have been introduced for posterior repairs to avoid synthetic mesh complications. In a review by Kohli and Miklos, 30 women underwent posterior repair with placement of cadaveric dermal graft and for an average of 12.9 months, 7% of patients showed failure (64). However, Altman et al., using collagen mesh had less satisfactory results. At 12 months of follow-up, 38% of patients had recurrent rectoceles (65). In a comparative study between posterior colporraphy, site-specific rectocele repair, or site-specific repair reinforced by porcine small intestinal submucosa graft, Paraiso et al, reported 86% of patients in first group and 78% of patients in site-specific repair group had anatomic cure. However, women who received graft for repair had 54% success rate (66). In another trial which compared posterior repair with or without polyglactin mesh (Vicryl), posterior compartment prolapse recurrence was equal in both groups (37).

In conclusion, currently it's not possible to make a definitive recommendation for rouine use of meshes or biological grafts in posterior compartment and native tissue even remains appropriate or same efficacy in posterior vaginal wall repair when compared to absorbable grafts (55). Moreover, there's still reluctance among many surgeons to put prosthetic material in posterior compartment because of the risk of erosion and coital dysfunction (7).

Vaginal Procedural Kits:

Although there's no evidence based suggestion for routine use of grafts or prosthesis in pelvic floor reconstructive surgeries, many different procedural kits have been developed for vaginal placement of mesh or graft, recently. These kits include needles, mesh/graft and/or several attachment devices. Most use blind passage of needles through safe foramens or attach mesh or fix them to different anatomic locations, such as major ligaments as landmarks. These kits are developed for correction of all compartments' prolapses. Intravaginal slingplasty, anterior and posterior repairs may be carried with these kits. Prolift (Ethicon, Somerville, NJ) aims to correct anterior, posterior, or total vaginal prolapse with type I polypropylene mesh, whereas Perigee and Apogee (American Medical Systems, Minnetonka, MN) employ either type I polypropylene mesh or porcine dermal graft for anterior and posterior restoration. Intravaginal slingplasty or infracoccygeal sacrocolpopexy corrects urinary incontinence and/or posterior component for apical prolapse (4). Current data related to these procedural kits are limited. Prospective randomized controlled studies are few and in limited series it was reported that ProliftTM had an overall cure rate of 95.3% at 3 months (67). Gauruder-Burmester et al, applied both Perigee aand Apogee nd reported 93% rate of success at 1 year (68). In several studies, success rate for IVS was reported to range from 74% to 96% (69-71). Nguyen and Burchette reported the results of their comparative study between anterior colporraphy and Perigee with polypropylene mesh. After 1 year, success and satisfaction was obtained in 55% of patients in colporraphy group and 87% in patients who received mesh (72). In a prospective study involving 70 women, Elevate TM kit was used for prolapse repair. Twenty Anterior, 16 Posterior, and 34 Anterior and Posterior repair systems were placed. Recurrences were recorded in 21 patients (31.3%) at the 1-year follow-up. Of the 21 failures (stage \geq 2), 13 were stage 2 with the leading edge above the hymen (73).

Various early complications were also reported for commercially available kits. In a series of 277 women who received Prolift (Johnson&Johnson, New Jersey, USA), a high rate of mesh exposure (12%) was reported (74). However, De Tayrac et al, reported 6.3% of vaginal erosions using Pelvitex (Sofradim, Trevoux, France) for anterior prolapse repair (75).

Similarly, Nguyen and Burchette also found low erosion rates for mesh use (5%). They also reported that de-novo dyspareunia occurred in 16% of patients receiving the kit whereas it was 9% in classic repair (72). In a recent study, evaluating the risk factors for mesh complications after trocar guided transvaginal mesh kit repair of anterior vaginal wall prolapse , mesh erosion rate was found to be 8.6%. Smoking, multiple childbirth, and somatic inflammatory disease were reported to be possible risk factors (76). Nguyen et al., evaluated perioperative complication and reoperation rates associated with slings and prolapse repairs using mesh and biologic grafts. During the 21-month period, 1508 women had prolapse repair procedures using implanted prostheses. Mesh-related reoperations after prolapse procedures were reported to be performed more often for vaginal mesh erosion (3%) than for biologic graft infection (0.3%) and were performed more commonly after anterior (6%) compared with apical (2%) or posterior vaginal mesh repairs (2%) (77).

Conclusions

Although there seems to be an increasing tendency to use of grafts in pelvic floor reconstructive surgeries, currently few studies show sufficient level of evidence. Improvement in mesh characteristics, better commercial kits may further increase their use, however long-term, randomized controlled studies are still lacking. Currently, there's mixed data to support the routine use of graft in pelvic organ prolapse treatment.

Synthetic grafts have been used for a long time for abdominal sacrocolpopexy and shown to have better results compared to biological grafts (5). The procedure is accepted as gold standard but may be associated with short term morbidity and potential foreign body problems (8).

Graft reinforcement in women with recurrent cystocele was reported to improve short term outcomes (7). Overall, insufficient data exist to conclude the superiority of anterior wall grafts to repairs without graft use. However, nonabsorbable sythetic meshes may reveal better results at the cost of several adverse events (55).

There's limited data evaluating the role of mesh augmentation for posterior compartment prolapse repair. In many of the studies, the use of biological grafts in posterior wall repairs did not reveal better results than native tissue repair. Similarly, use of synthetic meshes did not receive enough attention because of fear of infection/erosion. There's also limited long-term data for use of biological or synthetic grafts for posterior prolapse repair.

References.

- 1- Sung VW, Rogers RG, Schaffer JI, et al. Graft use in transvaginal pelvic organ prolapse repair. Obstet Gynecol 2008, 5: 1131-41.
- 2- Maher C, Baessler K, Glazener CMA, Hagen S. Surgical management of pelvic organ prolapse in women: a short version Cochrane review. Neurourol Urodynamics 2008, 27: 3-12.
- 3- Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 1997, 89: 501-6.
- 4- Ridgeway B, Chen CC, Paraiso MFR. The use of synthetic mesh in pelvic reconstructive surgery. Clin Obstet Gynecol 2008, 51:136-152.
- 5- Jakus SM, Shapiro A, Hall CD. Biological and synthetic graft use in pelvic surgery: a review. Obstet Gynecol Surv 2008, 63: 253-266.
- 6- Beiko D, Knudsen BE, Watterson JD, et al. Biomaterials in urology. Curr Urol Rep 2003, 4: 51-5.
- 7- Birch C, Fynes MM. The role of synthetic and biological prostheses in reconstructive pelvic floor surgery. Curr Opin Obstet Gynecol 2002, 14: 527-35.
- Le TH, Kon L, Bhatia NN, Ostergard DR. Update on the utilization of grafts in pelvic reconstructive surgeries. Curr Opin Obstet Gynecol 2007, 19: 480-9.
- 9- Davila GW, Ghoniem GM, Kapoor DS, et al. Pelvic floor dysfunction management practice patterns: a survey of membbers of the International Urogynecology Association. Int urogynecol J Pelvic Floor Dysfunct 2002, 13: 319-25.
- 10- Murphy M. Use of mesh and materials in pelvic floor surgery. Obstet Gynecol Clin N Am 2009, 36: 615-35.
- 11- Griffis K, Hale DS. Grafts in pelvic surgery. Clin Obstet Gynecol 2005, 48: 713-23.
- Silva WA, Karam MM. Scientific basis for use of grafts during vaginal reconstructive procedures. Curr Opin Obstet Gynecol 2005, 17: 519-29.
- 13- Nygaard IE, McCreery R, Brubaker L, et al. Pelvic Floor Disorders Network, Abdominal sacrocolpopexy: a comprehensive review. Obstet Gynecol 2004, 104: 805-23.
- 14- Hilger WS, Poulson M, Norton PA. Long-term results of abdominal sacrocolpopexy. Am J Obstet Gynecol 2003, 189: 1606-10.
- 15- Fitzgerald MP, Mollenhauser J, Bitterman P, Brubaker LT. Functional failure of fascia lata allografts. Am J Obstet Gynecol 1999, 181: 1339-44.
- 16- Culligan PJ, Murphy M, Blackwell L, et al. Long term success of abdominal sacral colpopexy using synthetic mesh. Am J Obstet Gynecol 2002, 187: 1473-80.
- 17- Gregory WT, Otto LN, Bergstrom JO, et al. Surgical outcome of abdominal sacrocolpopexy with synthetic mesh versus abdominal sacrocolpopexy with cadaveric fascia lata. Int Urogynecol J 2005, 16: 369-74.
- 18- Altman D, Anzen B, Brismar S, Lopez A, Zetterstrom J. Long-term outcome of abdominal sacrocolpopexy using xenograft compared with synthetic mesh. Urology 2006, 67: 719-24.
- 19- Rust JA, Botte JM, Howlett RJ. Prolapse of the vaginal vault. Improved techniques for management of the abdominal or vaginal approach. Am J Obstet Gynecol 1976, 125: 768-76.

- 20- Addison WA, Livengood CH, Sutton GP, et al. Abdominal sacral colpopexy with mersilene mesh in the retroperitoneal position in the management of post-hysterectomy vaginal vault prolapse and enterocele. Am J Obstet Gynecol 1985, 125: 768-76.
- 21- Baker KR, Beresford JM, Cambell C. Colposacropexy with prolene mesh. Surg Gynecol Obstet 1990, 171: 51-4.
- 22- Tate SB, Blackwell L, Lorenz DJ, Steptoe MM, Culligan PJ. Randomized trial of fascia lata and polypropylene mesh for abdominal sacrocolpopexy: 5-year follow-up. Int urogynecol J 2011, 22: 137-43.
- 23- Granese R, Candiani M, Perino A, Romano F, Cucinella G. Laparoscopic sacrocolpopexy in the treatment of vaginal vault prolapse: 8 years experience. Eur J Obstet Gynecol Reprod Biol 2009, 146: 227-31.
- 24- Fox SD, Stanton SL. Vault prolapse and rectocele: assessment of repair using sacrocolpopexy with mesh interposition. Br J Obstet Gynaecol 2000, 107: 1371-5.
- 25- Snyder TE, Krantz KE. Abdominal-retroperitoneal sacral colpopexy for the correction of vaginal prolapse. Obstet Gynecol 1991, 77:944-9.
- 26- Valaitis SR, Stanton SL. Sacrohysteropexy: a retrospectiive study of a clinician's experience. Br J Obstet Gynaecol 1994, 101: 518-22.
- 27- Benson JT, Lucente V, McClellan E. Vaginal versus abdominal reconstructive surgery for the treatment of pelvic support defects: a prospective randomized study with long term outcome evaluation. Am J Obstet Gynecol 1996, 175: 1418-21.
- 28- Lo TS, Wang AC. Abdominal colposacropexy and sacrospinous ligament suspension for severe uterovaginal prolapse: a comparison. J Gynecol Surg 1998, 14: 59-64.
- 29- Maher CF, Qatawneh AM, Dwyer PL, et al. Abdominal sacral colpopexy or vaginal sacrospinous ligament colpopexy for vaginal vault prolapse: a prospective randomized study. Am J Obstet Gynecol 2004, 190: 20-6
- Petros PE. Vault prolapse II: restoration of dynamic vaginal supports by infracoccygeal sacropexy, an axial day-case vaginal procedure. Eur Urol 2001; 39: 23-6.
- 31- Comsa S, Preti M, Mitidieri M, Petruzelli P, Possavino F, Menato G. Posterior intravaginal slingplasty: efficacy and complications in a continuous series of 118 cases. Int Urogynecol J 2011, 22: 611-9.
- 32- Fynes M, Goh JTW, Chong C, et al. Abdominal sacrocolpopexy for vaginal vault prolapse. Int Urogynecol Pelvic Floor Dysfunct 2001, 12: 14-7.
- Cervigni M. The use of synthetics in the treatment of pelvic organ prolapse. Curr Opin Urol 2001, 11: 429-35.
- 34- Whitehead WE. Postoperative gastrointestinal complications after abdominal sacrocolpopexy for advance pelvic organ prolapse. Am J Obstet Gynecol 2006, 17: S391-2
- 35- De Ridder D. Should we use meshes in the management of vaginal prolapse. Curr Opin urol 2008, 18: 377-82.
- 36- Chen CC, Ridgeway B, Paraiso MF. Biologic grafts and synthetic meshes in pelvic reconstructive surgery. Clin Obstet Gynecol 2007, 50: 383-411.
- 37- Sand PK, Koduri S, Lobel RW, et al. Prospective randomized trial of polyglactin 910 mesh to prevent recurrence of cystoceles and rectoceles. Am J Obstet Gynecol 2001, 184: 1357-62.
- 38- Weber AM, Walters MD, Piedmonte MR, et al. Anterior colporraphy: a randomized trial of three surgical techniques. Am J Obstet Gynecol 2001, 185: 1299-304.
- 39- De Tayrac R, Gervaise A, Chauveaud A, Fernandez H. Long term anatomical and functional assessment of trans-vaginal cystocele repair using a tension-free polypropylene mesh. Int Urogynecol J Pelvic Floor Dysfunct 2006, 17: 483-8.
- 40- Hoenil J, Jae WK, Noh HP, et al. Efficacy and outcome of anterior vaginal wall repair using polypropylene mesh (Gynemesh). J Obstet Gynecol Res 2007, 33: 700-4.
- 41- Deffieux X, de Tayrac R, Huel C, et al. Vaginal mesh erosion after transvaginal repair of cystocele using Gynemesh or Gynemesh-soft in 138 women. Int Urogynecol J 2007, 18: 73-9.
- 42- Julian TM. Thee efficacy of marlex mesh in the repair of severe recurrent vaginal prolapse of the anterior midvaginal wall. Am J Obstet Gynecol 1996, 156: 1-8.
- 43- Milani R, Salvatore S, Soligo M, et al. Functional and anatomical outcome of anterior and posterior vaginal prolapse repair with prolene mesh. BJOG 2005, 112: 107-11.
- 44- Salvatore S, Soligo M, Meschia M, et al. Prosthetic surgery for genital prolapse: functional outcome. Neurourol Urodyn 2002, 21: 296-7.
- 45- Jia X, Glazener C, Mowatt G, Bain C, Fraser C, Burr J. Efficacy and safety using mesh or grafts in surgery for anterior and/or posterior vaginal wall prolapse: systematic review and meta-analysis. BJOG 2008, 115: 1350-61.

- 46- Salomon LJ, Detchey R, Barranger E, et al. Treatment of anterior vaginal wall prolapse with porcine skin collagen implant by the transobturator route: preliminary results. Eur Urol 2004, 45: 219-25.
- 47- Gomelsky A, Rudy DC, Dmochowski RR. Porcine dermis interposition graft for repair of high grade anterior compatment defects with or without concomitant pelvic organ prolapse procedures. J Urol 2004, 171: 1581-4.
- 48- Simsiman AJ, Luber KM, Menefee SA. Vaginal paravaginal repair with porcine dermal reinforcement: correction of advanced anteriior vaginal prolapse. Am J Obstet Gynecol 2006, 195: 1832-6.
- 49- Cervigni M, Natale F, Weir J, et al. Prospective randomized trial of two new materials for the correction of anterior compartment prolapse: Pelvicol and Prolene soft. Neurourol Urodyn 2006, 24: 585-9
- 50- Maher C, Baessler K. Surgical management of anterior vaginal wall prolapse: an evidence-based literature review. Int Urogynecol J 2005, 17: 84-8.
- 51- Gandhi S, Goldberg RP, Kwon C, et al. A prospective randomized trial using solvent dehydrated fascia lata for the prevention of recurrent anterior vaginal wall prolapse. Am J Obstet Gynecol 2005, 192: 1649-54.
- 52- Kobashi KC, Mee SL, Leach G. A new technique for cystocele repair and transvaginal sling: the cadaveric prolapse repair and sling. Urology 2000, 56: 9-14.
- 53- Frederick RW, Leach GE. Cadaveric prolapse repair with sling. Intermediate outcomes with 6 months to 5 years of followup. J Urol 2005, 173: 1229-33.
- 54- Clemons JL, Myers DL, Aguilar VC, Arya LA. Vaginal paravaginal repair with an Alloderm graft. Am J Obstet Gynecol 2003, 189: 1618-9.
- 55- Murphy M. Clinical practice guidelines on vaginal graft use from the society of Gynecological Surgeons. Obstet Gynecol 2008, 112: 1123-30.
- 56- Chaikin DC, Groutz A, Blaivas JG. The use of cadaveric solvent dehydrated fascia lata for cystocele repair: preliminary results. Proceedings of the 25th annual meeting of the International Urogynecology Association. Int Urogynecol J Pelvic Floor Dysfunct 2000, 11(Suppl):S86.
- 57- Groutz A, Chaikin DC, Theusen E, et al. Use of cadaveric solvent-dehydrated fascia lata for cystocele repair: preliminary results. Urology 2001, 58: 179-83.
- 58- Chung SY, Franks M, Smith CP, et al. Technique of combined pubovaginal sling and cystocele repair using a single piece of cadaveric dermal graft. Urology 2002, 59: 538-41.
- 59- De Tayrac R, Gervaise A, Chauveaud A, et all. Tension free polypropylene mesh for vaginal repair of anterior vaginal wall prolapse. J Reprod Med 2005, 50: 75-80.
- 60- Migliari R, Usai E. Treatment results using a mixed fiber mesh in patients with grade IV cystocele. J Urol 1999, 161: 1255-8.
- 61- Huebner M, Hsu Y, Fener DE. The use of graft materials in vaginal pelvic floor surgery. Int J Urogynecol Obstet 2006, 92: 279-88.
- 62- Lim YN, Rane A, Muller R. An ambispective observational study in the safety and efficacy of posterior colporraphy with composite Vicryl Prolene mesh. Int Urogynecol J Pelvic Floor Dysfunc 2005, 16: 126-31.
- 63- Milani R, Salvatore S, Soligo M, et al. Functional and anatomical outcome of anterior and posterior vaginal prolaspe repair with prolene mesh. BJOG 2005, 112: 107-111.
- 64- Kohli N, Mikos JR. Dermal graft-augmented rectocele repair. Int Urogynecol J Pelvic Floor Dysfunct 2003, 14: 146-9.
- 65- Altman D, Zetterstrom J, Lopez A, et al. Functional and anatomic outcome after transvaginal rectocele repair using collagen mesh: a prospective study. Dis Colon Rectum 2005, 48: 1233-41.
- 66- Paraiso MF, Barber MD, Muir TQ, Walters MD. Rectocele repair: A randomized trial of three surgical techniques including graft augmentation. Am J Obstet Gynecol 2006, 195: 1762-71.
- 67- Fatton B, Amblard J, Debodinance P, et al. Transvaginal repair of genital prolapse: preliminary results of a new tension-free vaginal mesh-a case series multicentric study. Int Urogynecol J Pelvic Floor Dysfunc 2007, 18: 743-52.
- 68- Gauruder-Burmester A, Koutouzidou P, Rohne J, et al. Follow-up after polypropylene mesh repair of anterior and posterior compartments in patients with recurrent prolapse. Int Urogynecol J Pelvic Floor Dysfunc 2007, 18: 1059-64.
- 69- Farnsworth BN. Posterior intravaginal slingplasty for severe posthysterectomy vaginal vault prolapse-a preliminary report on efficacy and safety. Int Urogynecol J Pelvic Floor Dysfunc 2002, 13: 4-8.
- 70- Mattox TF, Moore S, Stanford EJ, et al. Posterior vaginal sling experience in elderly patients yields poor results. Am J Obstet Gynecol 2006, 194: 1462-6.
- 71- Hefni M, Yousri N, El-Toukhy T, et al. Morbidity associated with posterior intravaginal slingplasty for uterovaginal and vault prolapse. Arch Gynecol Obstet 2007, 276:499-504.
- 72- Nguyen JN, Burchette RJ. Outcome after anterior vaginal prolapse repair: a randomized controlled trial. Obstet Gynecol 2008, 111: 891-8.

- 73- Azais H, Charles CJ, Delporte P, Debodinance P. Prolapse repair using the ElevateTM kit: prospective study on 70 patients. Int Urogynecol J 2012, 12: 1673-7.
- 74- Collinet P, Belot F, Debodinance P, et al. Transvaginal mesh technique for pelvic organ prolapse repair: mesh exposure management and risk factors. Int Urogynecol J Pelvic Floor Dysfunc 2006, 17: 315-20.
- 75- De Tayrac R, Devoldere G, Renaudie J, et al. Prolapse repair by vaginal route using a new protected low-weight polyypropylene mesh: 1-year functional and anatomical outcome in a prospective multicentre study. Int Urogynecol J Pelvic Floor Dysfunct 2007, 18: 251-6.
- 76- Elmer C, Falconer C, Hallin A, et al. Risk factors for mesh complications after trocar guided transvaginal mesh kit. Neurourol Urodyn 2012, 2012 Apr 19. doi: 10.1002/nau. 22231., electronic.
- 77- Nguyen JN, Jakus-Waldman SM, Walter AJ, White T, Menefee SA. Perioperative complications and reoperations after incontinence and prolapse surgeries using prosthetic implants. Obstet Gynecol 2012, 119: 539-46.

Mesh contraction

Ö

Major Symptoms

- Severe vaginal pain (worsened by movements)
- Dyspareunia

Minor Symptoms

- Vaginal discharge/spotting
- Awareness of prolapse
- Male partner discomfort

Vaginal examination

Prominent tense focal areas of mesh
arm / body

Painfull prominent mesh areas

Prominent tender band
Vaginal tightness
Foreshortened vagina
Mesh erosion

Obstruction (BOO)

- BOO under diagnosed
- Incidence 2.7 23%
- Anatomical or functional
- Detrusor overactivity

Etiology

- Anti-incontinence procedures 20%
- Genital prolapes 16%
- Primary obstruction of the bladder neck 6%

Urethrolisys : Results

436 slings: 20 BOO (1995 - 2003) Autologous: 18 / 210 (8,5 %) Synthetic: 2 / 226 (0,6%) Diagnosis: from 3 m to 8 yrs. (mean: 9 m) Q_{max}: 9,9 ml/s P_{detQmax}: 48 cmH₂O (mean) Palma et al; Eur. Urol, 2004

TUIBN

Г

Healing abnormalities

Geralmente exposições sem granulação • Ocorre em 6-14% casos

- Maioria assimtomatica
- Tratada conservadoramente consultório ou CC
- Influencia resultado?

	Simple	Comple
Tempo pós-op	< 12 weeks	> 12 weeks
Granulatio inflammation	Absent	Present
Localization	incision	Other
organ	Vagina	viscus

	Oh Tano	Monaro	
	Ob Tape	WOnarc	101-0
Erosão	99	4	2
nfecção	22	1	1
leuropatia	0	1	3
Dor	0	1	8
angramento	1	1	3
. Bexiga	2	0	1
. Uretra	0	0	3

Leg pain

•40% TVT-0

Teo R, Moran P, Mayne C, Tincello D: Randomized trial of TVTand TVT-O for the treatment of urodynamic stress urinary incontinence in women.

2008 neurourology and urodymanics 27:572-3

Conclusions

- Mesh exposure 6-14%
- Conservative management first
- Patial removal
- Impact on the outcome?
- Severe complications experience
- Prevention is the best treatment!

Notes Record your notes from the workshop here